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Theory and computer simulation for the equation of state of additive hard-disk fluid mixtures
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A procedure previously developed by the authors to obtain the equation of state for a mixture of additive
hard spheres on the basis of a pure fluid equation of state is applied here to a binary mixture of additive hard
disks in two dimensions. The equation of state depends on two parameters which are determined from the
second and third virial coefficients for the mixture, which are known exactly. Results are compared with Monte
Carlo calculations which are also reported. The agreement between theory and simulation is very good. For the
fourth and fifth virial coefficients of the mixture, the equation of state gives results which are also in close
agreement with exact numerical values reported in the literature.
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I. INTRODUCTION

Since the derivation by Lebowitz@1# and Lebowitzet al.
@2# of the solutions of the Percus-Yevick~PY! theory and the
scaled particle theory~SPT!, respectively, for additive hard
sphere fluid mixtures, there has been a sustained intere
this kind of mixture. Currently, there is available a go
equation of state for these mixtures, the so-called BMC
~Boublı́k, Mansoori, Carnahan, Starling, and Leland! equa-
tion of state, derived independently by Boublı´k @3# and by
Mansooriet al. @4#, on a semiempirical basis, as well as
considerable amount of simulation data. In spite of this,
search for an improved equation of state continues@5–7#.
Moreover, in the last few years, a new subject of intens
research in this field has raised up, namely the phase be
ior of this system@8–12#.

One reason for this interest is that the hard-sphere fl
mixture is an adequate reference system in perturbation t
ries for more realistic mixtures. Moreover, the equation
state and the contact values of the pair correlation functio
the hard-sphere fluid are used in the context of some theo
for models of polyatomic pure fluids and mixtures, as is
case for the bonded hard-sphere~BHS! theory@13–15#. An-
other interesting aspect is the close relation between bin
hard-sphere mixtures with high values of the diameter ra
and real colloidal suspensions.

In principle, we could think that two-dimensional har
disk pure fluids and mixtures are lacking of interest beca
they are systems more distant from real systems. Howe
this is not exactly true. On the one hand, two-dimensio
fluids can be considered a first approximation to the stud
adsorption of molecules by a solid surface. On the ot
hand, two-dimensional fluids are often used as a cohere
test for theories initially developed for three-dimensional fl
ids.

In spite of this, the amount of research, both from the
as well as from computer simulation, devoted to tw
dimensional hard-disk fluids is much more scarce than
the three-dimensional case. This is particularly true for m
tures. This is partially due to the fact that some integral eq
tion theories frequently used to obtain the pair correlat
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function and the equation of state of a three-dimensio
hard-sphere fluid are not applicable for even dimensiona

In a recent paper@7# we have developed a procedure th
allows us to obtain the equation of state for a thre
dimensional binary mixture of hard spheres from any eq
tion of state for the pure fluid and the second and third vir
coefficients for the mixture, which are known analytically.
the present paper, we apply the same procedure to obtain
equation of state of a two-dimensional binary mixture
hard disks. Results are compared with those from other eq
tions of state and with canonical ensemble~NVT! Monte
Carlo calculations which are also reported for several dia
eter ratios and mole fractions.

II. EQUATION OF STATE FOR A BINARY MIXTURE
OF HARD DISKS

A. Monte Carlo simulations

NVT Monte Carlo simulations have been performed f
systems consisting ofN5256 particles in a square box wit
periodic boundary conditions. Each system consists ofN1

5x1N disks of diameters1 andN25x2N disks of diameter
s2, with s1.s2, where x1 and x2 are the corresponding
mole fractions. Diameter ratioss2 /s152/3, 1/2, and 1/3,
and mole fractionsx150.25, 0.5, and 0.75, have been co
sidered. Particles were initially placed in a regular array w
diameters chosen randomly to bes1 or s2 with the con-
straints of fixed x1 and packing fraction hmix

5(p/4)r( ixis i
2 for the mixture, wherer is the total number

density. Systems were allowed to equilibrate for 500 to 50
cycles, each of them consisting of an attempt move per p
ticle, depending on density. For the higher densities, overl
between particles in the initial configuration, which we
present in some cases, were removed before starting eq
bration. The equation of state was determined from meas
ments of the partial pair correlation functionsgi j (r ) per-
formed over 104 to 1.23105 additional cycles, extrapolating
to contact, and using the virial equation. In some cases
eral independent runs were performed to increase accur
Results are shown in Table I together with the estima
errors determined as the standard deviation.
©2000 The American Physical Society01-1



o-
u-

m
a

is
wa

a
ry

rd-

.
s

e

ne
ond

the

ty
i
u
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B. Theory

Our starting point is the virial theorem for a multicomp
nent two-dimensional fluid consisting of particles with circ
lar shapes, which is expressed in the form

Zmix5
pV

NkT

512
p

2

r

kT (
i

(
j

xixjE r 2
]ui j

]r
gi j ~r ;r,T,xi ,xj !dr,

~1!

wherer5N/V is the number density for the mixture,ui j is
the intermolecular potential between particlesi andj, andgi j
is the pair correlation function~PCF! for these particles. The
latter depends on the mole fractionsxi and xj for speciesi
and j, in addition to density and temperature.

When the pure fluids that form the mixture have the sa
form of the intermolecular potential and the PCF, it is re
sonable to approximate the pair correlation functionsgi j in
the mixture by that corresponding to a pure fluid with d
tances, density, and temperature scaled in a suitable
This is done in some theories such as the mean density
proximation @16# and the van der Waals one-fluid theo
~vdW1!. In the former, for a two-dimensional fluid

TABLE I. Monte Carlo simulation data for the compressibili
factor of binary hard-disk fluid mixtures. The numbers enclosed
parentheses indicate the estimated error in the last significant fig

Zmix
MC

s2 /s1 hmix x150.25 x150.50 x150.75

2/3 0.20 1.559~6! 1.561~5! 1.565~4!

0.30 2.036~8! 2.043~8! 2.051~8!

0.40 2.79~1! 2.79~1! 2.80~1!

0.45 3.31~1! 3.31~2! 3.33~1!

0.50 4.02~2! 4.02~1! 4.04~2!

0.55 4.98~2! 4.98~2! 5.03~2!

0.60 6.31~2! 6.30~1! 6.36~3!

1/2 0.20 1.534~6! 1.540~6! 1.556~7!

0.30 1.998~7! 2.008~7! 2.039~8!

0.40 2.72~1! 2.71~1! 2.77~1!

0.45 3.20~2! 3.22~2! 3.29~2!

0.50 3.88~1! 3.90~2! 3.98~2!

0.55 4.79~2! 4.81~2! 4.93~2!

0.60 6.03~3! 6.04~2! 6.22~3!

1/3 0.20 1.491~6! 1.510~8! 1.538~9!

0.30 1.907~8! 1.940~8! 2.004~9!

0.40 2.55~1! 2.59~1! 2.71~1!

0.45 2.99~2! 3.07~1! 3.20~2!

0.50 3.60~2! 3.69~2! 3.89~2!

0.55 4.39~3! 4.52~2! 4.79~2!

0.60 5.66~3! 6.06~1!
01120
e
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gi j ~r /s i j ,r,T,xi ,xj !5g0~r /s0 ,rs0
2 ,kT/« i j !, ~2!

whereas in the vdW1 theory

gi j ~r /s i j ,r,T,xi ,xj !5g0~r /s0 ,rs0
2 ,kT/«0!, ~3!

where

s0
25(

i
(

j
xixjs i j

2 ~4!

and

«0s0
25(

i
(

j
xixj« i j s i j

2 . ~5!

In particular, if the particles interact by means of a ha
disk potential, both approximations lead to

gi j ~r /s i j ,r,xi ,xj !5g0~r /s0 ,rs0
2!, ~6!

whereg0 is the PCFgHD for a pure fluid consisting of hard
disks with diameters0 defined by Eq.~4! with

s i j 5
1

2
~s i1s j !. ~7!

In this case the virial theorem for a pure fluid leads to

Zmix
HD 511

1

2
prs0

2gHD~h0!5112h0gHD~h0!, ~8!

whereh05rps0
2/4 is the fictitious packing fraction of the

reference pure fluid andgHD the contact value of its PCF
From expression~8! it is clear that the reference fluid give
the right second virial coefficient of the mixture

Bmix
HD 5

p

2 (
i

(
j

xixjs i j
2 , ~9!

where s i j is given by expression~7!, provided that in the
low-density limit, the PCF of the reference fluid fulfills th
conditiongHD(0)51, as it ought to be.

However, for our purposes it is more convenient to defi
the reference fluid as one not only having the same sec
virial coefficient but also the same packing fraction as
mixture. Therefore, we will modify expression~8! in the
form

Zmix
HD 511

1

2
prs0

2gHD~hmix!

5112hmixS (
i

(
j

xixjsi j /smixDgHD~hmix!

511s@ZHD~hmix!21#, ~10!

where

s5
1

smix
(

i
(

j
xixjsi j , ~11!

n
re.
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smix5
p

4 (
i

xis i
2 ~12!

is the average surface of a disk, and

FIG. 1. Ratio of the excess compressibility factorZmix
HD for hard-

disk fluid mixtures with respect to that for the pure fluid, as giv
by Eq. ~15!, as a function of the packing fractionhmix for the
diameter ratios2 /s152/3 and different mole fractions. Circles
Monte Carlo simulations. Continuous line: Eq.~17!. Long-dashed
line: Eq. ~24!. Dashed line: Eq.~26!. Dotted line: Eq.~27!. Dash-
dotted line: Eq.~28!.
01120
si j 5
p

4
s i j

2 ~13!

with s i j given by Eq.~7!.
In expression~10! we can use forZHD any equation of

state suitable for the pure fluid. However, in order to rep
duce the right second virial coefficient~9!, the equation of
state chosen must, in turn, predict correctly the second v
coefficient for the pure fluid. There have been proposed
the latter several equations of state fulfilling this conditio

FIG. 2. As in Fig. 1 for the diameter ratios2 /s151/2.
1-3
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C. BARRIO AND J. R. SOLANA PHYSICAL REVIEW E63 011201
Among them, we have the equation of state proposed
Henderson@17#

ZHD5
11h2/8

~12h!2 , ~14!

which is simple and reasonably accurate. In this equat
h5(p/4)rs2 is the packing fraction of a pure fluid of har
disks of diameters and number densityr. A bit more com-
plicated, but also more accurate, is the equation of state f
Woodcock@18#

FIG. 3. As in Fig. 1 for the diameter ratios2 /s151/3.
01120
y

n,

m

ZHD511
4x

12x
1(

i 52

n

~Bi24!xi 21, ~15!

where x5V0 /V, V05N(A3/2)s2 being the two-
dimensional regular close-packing ‘‘volume,’’V is the vol-
ume~surface! of the system, andBi is the virial coefficient of
order i in the expansion of the compressibility factorZHD in
the power series ofx. Another suitable equation of state ha
been recently proposed by Santoset al. @19# in the form

ZHD5F122h1
2hcp21

hcp
2

h2G21

, ~16!

where h has the same meaning as in Eq.~14! and hcp

5(A3/6)p is the close-packing fraction.
Takingh5hmix , any of these equations of state, togeth

with the simulation data listed in Table I, can be used
calculate the ratio (Zmix

HD 21)/@ZHD(hmix)21# that, accord-
ing to Eq.~10!, should be constant with density. Results f
this ratio are shown in Figs. 1–3, where we can see t
rather than constant, the ratio is approximately a linear fu
tion of the packing fraction of the mixture. This is mor
clearly seen for high values of the diameter ratio. To acco
for this fact, we will modify Eq.~10! in the form

Zmix
HD 511s~a1bhmix!@ZHD~hmix!21#. ~17!

In order to obtain parametersa andb, we can impose the
condition that the equation of state must reproduce exa
the second and third virial coefficients of the mixture, whi
are known exactly. The second virial coefficient is given
Eq. ~9!, whereas the expression for the third is@20#

Cmix
HD 5

p

3
~a11x1

3s1
41a12x1

2x2s12
4 1a21x1x2

2s12
4 1a22x2

3s2
4!,

~18!

wheres i j is given by expression~7! and coefficientsai j are
given by

a115a225p233/2/4, ~19!

a1253@p12~j1
2221!cos21~1/2j1!

2~1/2j1
2!~111/2j1

2!~4j1
221!1/2#, ~20!

anda21 is given by the last expression by changingj1 to j2,
wherej15s12/s1 andj25s12/s2.

Then, the condition that Eq.~17! must reproduce exactly
the second and third virial coefficients gives

a51 ~21!

and

b5
1

smix

Cmix
HD

Bmix
HD

2
CHD

2
, ~22!

where
1-4



THEORY AND COMPUTER SIMULATION FOR THE . . . PHYSICAL REVIEW E63 011201
FIG. 4. Fourth virial coefficientDmix
HD of two-dimensional mixtures of additive hard disks, in units ofs1

6 , for several values of the
diameter ratio as a function of the mole fraction. Circles: exact values from Ref.@22#. Lines have the same meaning as in Fig. 1.
011201-5



C. BARRIO AND J. R. SOLANA PHYSICAL REVIEW E63 011201
FIG. 5. As in Fig. 4 for the fifth virial coefficient in units ofs1
8. Circles: exact values from Refs.@23# and @24#. Lines have the same

meaning as in Fig. 1.
011201-6
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CHD54S 4

3
2

A3

p D ~23!

is the third virial coefficient for a pure hard-disk fluid. Equ
tion ~17!, together with parameters~21! and~22! is the two-
dimensional equivalent of the equation of state previou
derived@7# for three-dimensional hard-sphere fluid mixtur
@21#.

III. RESULTS AND DISCUSSION

Results from the equation of state~17!, taking Eq.~15! for
ZHD, are compared in Figs. 1–3 with the simulation da
listed in Table I. Also included, for comparison, are the
sults from other equations of state. One of them is the eq
tion of state which results@20# from the scaled particle
theory

Zmix
SPT5

12~12j!hmix

~12hmix!
2

, ~24!

where

j5S (
i

xis i D 2Y (
i

xis i
2 . ~25!

Another is the equation of state derived from the resca
virial expansion~RVE! @20#

Zmix
RVE5

11c1hmix1c2hmix
2

~12hmix!
2

, ~26!

wherec1 andc2 are determined from the condition that th
equation of state must exactly reproduce the second and
virial coefficients of the mixture.

Also are shown in Figs. 1–3 the results from the equat
of state obtained@20# from the application of the conforma
solution theory to the equation of state~14!, derived by
Henderson@17# for the pure fluid. Introducing the fictitious
packing fractionh05rps0

2/4 for the reference pure fluid
into Eq.~14!, the resulting equation of state for the mixture

Zmix
H 5

11h0
2/8

~12h0!2 . ~27!

Finally, we have considered an equation of state rece
proposed@6# in the form

Zmix
SBL511@ZHD~hmix!21#j1

hmix~12j!

12hmix
, ~28!

wherej is given by Eq.~25! and, forZHD(hmix), we have
taken Eq.~16!.

As we can see in Figs. 1–3, Eqs.~24!, ~26!, and ~28!
appreciably deviate from simulation data at all densities,
though it is to be noted that a plot like that of these figu
em

01120
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enhances the deviations. Equation~27! gives good agreemen
for low to moderate densities, but overestimates the sim
tion data at high densities. The results from Eq.~17! are, as a
whole, in closer agreement with simulation data than th
obtained from the other equations considered.

On the other hand, in Figs. 4 and 5 we compare the va
of the fourth and fifth virial coefficients predicted by Eq
~17! and ~26! with existing numerical data@22–24#. In this
case, Eq.~26! provides the best agreement, although this
hardly appreciated at the scale of these figures. However,
to be noted that the accuracy of Eq.~17! depends on the
accuracy of the equation of stateZHD(hmix) used for the
pure fluid. In this sense, the equation of state~15! used is the
most accurate among all the equations considered. Howe
we cannot discard that, using an equation of state still m
accurate for the pure fluid, the predictions for the fourth a
fifth virial coefficients of the mixture would improve.

On the other hand, it is rather surprising that Eq.~27!
gives the poorest agreement with simulation data, as sh
in Figs. 1–3, in spite of the fact that it reproduces exactly
second virial coefficient and apparently, in Figs. 4 and
with reasonable accuracy the fourth and fifth virial coef
cients. However, it is to be noted that a plot like that of Fig
1–3 enhances the deviations, whereas the contrary occu
Figs. 4 and 5. Thus, although hardly appreciated in th
figures, the values of the fourth and fifth virial coefficien
predicted by Eq.~27! are too low by amounts of 8% and 10%
on average, respectively, as compared with exact val
with the highest deviations occurring for the lowest values
the diameter ratio. Moreover, an accurate prediction of
first few virial coefficients does not guarantee an accur
equation of state. In fact, the exact virial expansion, tru
cated at the fifth term, gives trivially the exact values of t
first five virial coefficients, but it is easy to see that
strongly underestimates the values of the compressibility
tor.

In summary, the procedure previously developed@7# for
obtaining the equation of state for a multicomponent ha
sphere fluid mixture on the basis of any equation of state
the pure fluid, is found in this paper to be satisfactory a
for a two-dimensional hard-disk fluid mixture. The agre
ment of the derived equation of state with the reported sim
lation data is, on the whole, better than for other equation
state proposed in the literature. The new equation also re
duces very accurately the numerical data available for
fourth and fifth virial coefficients of the mixture.

ACKNOWLEDGMENTS

We are grateful to the Spanish Direccio´n General de
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