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Theory and computer simulation for the equation of state of additive hard-disk fluid mixtures
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A procedure previously developed by the authors to obtain the equation of state for a mixture of additive
hard spheres on the basis of a pure fluid equation of state is applied here to a binary mixture of additive hard
disks in two dimensions. The equation of state depends on two parameters which are determined from the
second and third virial coefficients for the mixture, which are known exactly. Results are compared with Monte
Carlo calculations which are also reported. The agreement between theory and simulation is very good. For the
fourth and fifth virial coefficients of the mixture, the equation of state gives results which are also in close
agreement with exact numerical values reported in the literature.
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[. INTRODUCTION function and the equation of state of a three-dimensional
hard-sphere fluid are not applicable for even dimensionality.
Since the derivation by LebowifZ] and Lebowitzet al. In a recent papdi7] we have developed a procedure that

[2] of the solutions of the Percus-Yevi¢RY) theory and the allows us to obtain the equation of state for a three-
scaled particle theorySPT), respectively, for additive hard- dimensional binary mixture of hard spheres from any equa-
sphere fluid mixtures, there has been a sustained interest fion of state for the pure fluid and the second and third virial
this kind of mixture. Currently, there is available a good coefficients for the mixture, which are known analytically. In
equation of state for these mixtures, the so-called BMCSlthe present paper, we apply the same procedure to obtain the
(Boublk, Mansoori, Carnahan, Starling, and Lelaredjua-  equation of state of a two-dimensional binary mixture of
tion of state, derived independently by Bokb[B] and by  hard disks. Results are compared with those from other equa-
Mansooriet al. [4], on a semiempirical basis, as well as ations of state and with canonical ensemibvVT) Monte

considerable amount of simulation data. In spite of this, thecarlo calculations which are also reported for several diam-
search for an improved equation of state contin[&s7]. eter ratios and mole fractions.

Moreover, in the last few years, a new subject of intensive
research in this field has raised up, namely the phase behav-
ior of this systen{8-12].

One reason for this interest is that the hard-sphere fluid
mixture is an adequate reference system in perturbation theo-
ries for more realistic mixtures. Moreover, the equation of A. Monte Carlo simulations
state and the contact values of the pair correlation function of
the hard-sphere fluid are used in the context of some theories NVT Monte Carlo simulations have been performed for
for models of polyatomic pure fluids and mixtures, as is thesystems consisting df =256 particles in a square box with
case for the bonded hard-sph¢BHS) theory[13-15. An-  periodic boundary conditions. Each system consistd pf
other interesting aspect is the close relation between binary x,N disks of diameterr; andN,=x,N disks of diameter
hard-sphere mlxtures Wlth_hlgh values of the diameter ratloaz, with ;> 0, wherex, and x, are the corresponding
and real colloidal suspensions. _ _ mole fractions. Diameter ratios,/o,=2/3, 1/2, and 1/3,

In principle, we could think that two-dimensional hard- and mole fractions, =0.25, 0.5, and 0.75, have been con-

disk pure fiuids and mixtures are lacking of interest becausgidered. Particles were initially placed in a regular array with
they are systems more distant from real systems. However,

this is not exactly true. On the one hand, two-dimensionafi"’:meters chos.,en randomly to log or a2 with _the con-
fluids can be considered a first approximation to the study optraints of 2f|xed X1 _and packln_g fraction  7mix
adsorption of molecules by a solid surface. On the othefr (7/4)pZixjo7 for the mixture, wher is the total number
hand, two-dimensional fluids are often used as a coherenc§ensity. Systems were allowed to equilibrate for 500 to 5000
test for theories initially developed for three-dimensional flu-cycles, each of them consisting of an attempt move per par-
ids. ticle, depending on density. For the higher densities, overlaps
In spite of this, the amount of research, both from theorybetween particles in the initial configuration, which were

as well as from computer simulation, devoted to two-present in some cases, were removed before starting equili-
dimensional hard-disk fluids is much more scarce than fobration. The equation of state was determined from measure-
the three-dimensional case. This is particularly true for mix-ments of the partial pair correlation functioms;(r) per-
tures. This is partially due to the fact that some integral equaformed over 16 to 1.2x 10° additional cycles, extrapolating
tion theories frequently used to obtain the pair correlationto contact, and using the virial equation. In some cases sev-

eral independent runs were performed to increase accuracy.

Results are shown in Table | together with the estimated

* Author to whom correspondence should be addressed. errors determined as the standard deviation.

II. EQUATION OF STATE FOR A BINARY MIXTURE
OF HARD DISKS
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TABLE |. Monte Carlo simulation data for the compressibility gii(rloii ,p, T X ,X-)=go(r/cro,ptrg,kT/8i-), 2)
factor of binary hard-disk fluid mixtures. The numbers enclosed in ! ! ! !
parentheses indicate the estimated error in the last significant figurgyhereas in the vdw1 theory

ZMI():( g”(l’/a'” ,p,T,Xi,Xj):go(r/(To,p(Tg,kT/SO), (3)
0'2/0'1 Mmix X1:0.25 X]_:O.SO X1:0.75
where
2/3 0.20 1.55@) 1.5615) 1.5654)
0.30 2.0368) 2.0438) 2.0518) 2 2
0.40 2.791) 2.791) 2.801) "O_Zi 2 XiX; 07} )
0.45 3.311) 3.31(2) 3.331)
0.50 4.022) 4.021) 4.042) and
0.55 4.982) 4.9892) 5.032)
0.60 6.312) 6.301) 6.363) 800522 2 XiX;&ij 02 . (5)
12 (()) ;g 11 '9593@) 1.5406 1.85a7) In particular, if the particles interact by means of a hard-
' -9987) 2.0087) 2.0398) disk potential, both approximations lead to
0.40 2.721) 2.71(1) 2.771) P ’ PP
0.45 3.202) 3.222) 3.292) gij(rloij ,p,Xi ,X;) = Jo(r/og.pop), (6)
0.50 3.881) 3.902) 3.9892)
0.55 4.792) 4.81(2) 4.932) whereg, is the PCFg"P for a pure fluid consisting of hard
0.60 6.033) 6.042) 6.223) disks with diametewr, defined by Eq(4) with
13 020 14916  15108) 1.5389) P (o140, @
0.30 1.9078) 1.9408) 2.0049) 2t
0.40 2.5%1) 2.591) 2.71(1) . . .
0.45 2.992) 3.071) 3.202) In this case the virial theorem for a pure fluid leads to
0.50 3.602) 3.692) 3.892) 1
055 438 4.522) 4.792) Zmin= 1+ 5 mp0g"P(m0) =1+2709" (o), (8)
0.60 5.663) 6.06(1)

where nozpmgm is the fictitious packing fraction of the
reference pure fluid ang™® the contact value of its PCF.
B. Theory From expression8) it is clear that the reference fluid gives
Our starting point is the virial theorem for a multicompo- the right second virial coefficient of the mixture
nent two-dimensional fluid consisting of particles with circu-

lar shapes, which is expressed in the form BH?X% 2 2 Xixjgﬁ , 9
P
pVv
ZmiX:_NkT where oj; is given by expressiol(7), provided that in the

low-density limit, the PCF of the reference fluid fulfills the
TP , AUjj conditiong"P(0)=1, as it ought to be.
=1=5T Z 2 Xixjf o= i (rp Toxi xpdr, However, for our purposes it is more convenient to define
the reference fluid as one not only having the same second
(1) virial coefficient but also the same packing fraction as the
mixture. Therefore, we will modify expressiof8) in the

form
wherep=N/V is the number density for the mixture;; is

the intermolecular potential between partidlesdj, andg;; D 1 » b

is the pair correlation functiofPCH for these particles. The Zpi=1+ 57PTY (mix)
latter depends on the mole fractiorsandx; for species

andj, in addition to density and temperature.

— HD
When the pure fluids that form the mixture have the same =14 27mix Z 2 XiX;Sij ISmix| 9" (77mix)
form of the intermolecular potential and the PCF, it is rea-
sonable to approximate the pair correlation functigysin =1+S[Z"P (i) — 11, (10)

the mixture by that corresponding to a pure fluid with dis-
tances, density, and temperature scaled in a suitable wayhere
This is done in some theories such as the mean density ap-
proximation [16] and the van der Waals one-fluid theory
(vdW1). In the former, for a two-dimensional fluid Smix

Ei 2 XinSij, (11)
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FIG. 1. Ratio of the excess compressibility facZ{?, for hard-

FIG. 2. As in Fig. 1 for the diameter rati@,/o,=1/2.

disk fluid mixtures with respect to that for the pure fluid, as given
by Eq. (15), as a function of the packing fraction,,;x for the -

diameter ratioo,/01=2/3 and different mole fractions. Circles:
Monte Carlo simulations. Continuous line: Ed.7). Long-dashed

sij:ZUiZj (13)

line: Eq. (24). Dashed line: Eq(26). Dotted line: Eq.(27). Dash-

dotted line: Eq.(298).

T
— 2
Smix= 4 2 X0

is the average surface of a disk, and

with oy; given by Eq.(7).

In expression(10) we can use foZ"P any equation of
state suitable for the pure fluid. However, in order to repro-
duce the right second virial coefficief®), the equation of
state chosen must, in turn, predict correctly the second virial
coefficient for the pure fluid. There have been proposed for
the latter several equations of state fulfilling this condition.

12
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FIG. 3. As in Fig. 1 for the diameter ratio, /o, =1/3.
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ax _
ZMP=14+ —+> (B;—4)x %,
1-x =

(15
where x=V,/V, V,=N(\3/2)0? being the two-

dimensional regular close-packing “volumeY is the vol-
ume(surface of the system, anB; is the virial coefficient of
orderi in the expansion of the compressibility fac@i'® in
the power series of. Another suitable equation of state has

been recently proposed by Santsal. [19] in the form
-1

2nep— 1
— | (16)
Mep

ZMP=1-29+

where 7 has the same meaning as in E44) and 7,
=(/3/6)m is the close-packing fraction.

Taking 7= nmix, any of these equations of state, together
with the simulation data listed in Table I, can be used to
calculate the ratio 2P —1)/[ZHP(mi) — 1] that, accord-
ing to Eq.(10), should be constant with density. Results for
this ratio are shown in Figs. 1-3, where we can see that,
rather than constant, the ratio is approximately a linear func-
tion of the packing fraction of the mixture. This is more
clearly seen for high values of the diameter ratio. To account
for this fact, we will modify Eq.(10) in the form

Zrgi=1+8(a+ b 7i) [ 2 (i) — 11.

mix

17

In order to obtain parametessandb, we can impose the
condition that the equation of state must reproduce exactly
the second and third virial coefficients of the mixture, which
are known exactly. The second virial coefficient is given by
Eq. (9), whereas the expression for the third 29|

aa
CHD

_ 3 4 2, 4 2 4 3 4
mix= 3 (a1X70] T a1X X075 821X X505 8oX50)

(18

wherea; is given by expressiofi7) and coefficients;; are
given by

A= Aopp=T— 33/2/4, (19)
a1,=3[m+2(&; 2—1)cos Y(1/2¢,)
— (1260 (1+ 1/2&0) (462 - 1)22], (20)

anda,q is given by the last expression by changihgto &5,
Whel‘e§1= 0'12/0'1 and §2: 0'12/0'2.

Among them, we have the equation of state proposed by Then, the condition that Eq17) must reproduce exactly

Hendersor{17] the second and third virial coefficients gives
1+ 7°I8 a=1 21
HD:(l_L)z, (14) @Y
g and
which is sin;ple and reasonably accurate. In this equation, 1 cHb cHD
n=(ml4)po” is the packing fraction of a pure fluid of hard b= mix _ (22)
disks of diameter and number density. A bit more com- Smix BHD 2 7

plicated, but also more accurate, is the equation of state from
Woodcock[18] where
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FIG. 4. Fourth virial coefficienD"'? of two-dimensional mixtures of additive hard disks, in unitsaff, for several values of the
diameter ratio as a function of the mole fraction. Circles: exact values from[Z&f.Lines have the same meaning as in Fig. 1.
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FIG. 5. As in Fig. 4 for the fifth virial coefficient in units off-?. Circles: exact values from Ref23] and[24]. Lines have the same
meaning as in Fig. 1.
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4 3 enhances the deviations. Equati@d) gives good agreement
CHD=4(§——) (23)  for low to moderate densities, but overestimates the simula-
. tion data at high densities. The results from Eky) are, as a
is the third virial coefficient for a pure hard-disk fluid. Equa- Whole, in closer agreement with simulation data than those
tion (17), together with parameter@1) and(22) is the two-  Obtained from the other equations considered.
dimensional equivalent of the equation of state previously ©On the otherhand, in Figs. 4 and 5 we compare the values
derived[7] for three-dimensional hard-sphere fluid mixtures ©f the fourth and fifth virial coefficients predicted by Egs.
[21]. (17) and (26) with existing numerical datf22—24. In this
case, Eq(26) provides the best agreement, although this is
lll. RESULTS AND DISCUSSION hardly appreciated at the scale of these figures. However, it is
: - to be noted that the accuracy of E{.7) depends on the
Results from the equation of stdtk7), taking Eq.(15) for accuracy of the equation of Sta®(7:) used for the

Z"P, are compared in Figs. 1-3 with the simulation data duied. In th h o of dis th
listed in Table I. Also included, for comparison, are the re-Pure fluid. In this sense, the equation o StitB) used is the

sults from other equations of state. One of them is the equamoSt accurate among all th_e equations _considered. H_owever,
tion of state which result§20] from the scaled particle we cannot discard that, using an equation of state still more
theory accurate for the pure fluid, the predictions for the fourth and

fifth virial coefficients of the mixture would improve.
, (24) On the other hand, it is rather surprising that EZ7)
(1= min)? gives the poorest agreement with simulation data, as shown
in Figs. 1-3, in spite of the fact that it reproduces exactly the
where second virial coefficient and apparently, in Figs. 4 and 5,
2 ) with reasonable accuracy the fourth and fifth virial coeffi-
&= ( Z Xi(fi) Z X0 (25 cients. However, it is to be noted that a plot like that of Figs.
1-3 enhances the deviations, whereas the contrary occurs in
Another is the equation of state derived from the rescaledfigs. 4 and 5. Thus, although hardly appreciated in these
virial expansion(RVE) [20] figures, the values of the fourth and fifth virial coefficients
predicted by Eq(27) are too low by amounts of 8% and 10%
, (26) on average, respectively, as compared with exact values,
(1= Dmix) with the highest deviations occurring for the lowest values of

wherec, andc, are determined from the condition that the t_he diameter ratio. Moreover, an accurate prediction of the

equation of state must exactly reproduce the second and thifffSt few virial coefficients does not guarantee an accurate
virial coefficients of the mixture. equation of state. In fact, the exact virial expansion, trun-

Also are shown in Figs. 1—3 the results from the equatior?ated at the fifth term, gives trivially the exact values of the
of state obtained20] from the application of the conformal first five virial coefficients, but it is easy to see that it
solution theory to the equation of stat@4), derived by strongly underestimates the values of the compressibility fac-
Hendersor{17] for the pure fluid. Introducing the fictitious - _
packing fractionz,=pmo2/4 for the reference pure fluid !N summary, the procedure previously develojp@ifor

into Eq.(14), the resulting equation of state for the mixture is obtaining .the equation of state for a muIUcomponent hard-
sphere fluid mixture on the basis of any equation of state for

SpT_l_(l_g) Mmix

mix

2
RVE_ 1+ Cl 7]mix+ CZ 77mix
mix —

2

H _ 1+ 70/8 27) the pure fluid, is found in this paper to be satisfactory also

mix—(1— )% for a two-dimensional hard-disk fluid mixture. The agree-

Finally, we have considered an equation of state recentlynent of the derived equation of state with the reported simu-
proposed 6] in the form lation data is, on the whole, better than for other equations of
state proposed in the literature. The new equation also repro-

ZSBlo14[ZMH0 (5 ) —1]é+ mix(1— ) (28) duces very_accqrgtely th_e _numerical dat_a available for the

mix mix 1= 7mix fourth and fifth virial coefficients of the mixture.
where¢ is given by Eq.(25) and, forZ"P(#,), we have ACKNOWLEDGMENTS

taken Eq.(16).
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